Role of fiber orientation and design on thermal and mechanical properties of natural composite

Author:

Prasanthi P. Phani,Ramacharyulu D. Atchuta,Babu K. Sivaji,Madhav V. V. Venu,Chaitanya Ch. Sri,Saxena Kuldeep K.,Revathi V.,Abduvalieva Dilsora,Bandhu DinORCID

Abstract

AbstractThe study focuses on exploring the mechanical and thermal properties of natural bagasse fiber-reinforced epoxy matrix composites. Young’s modulus of these composites was determined through tests involving varied orientations of bagasse fibers. Experimental findings were then correlated with analytical models. Thermal conductivity was predicted using simulation studies aided by Micromechanics and Finite Element methods. Finite Element outcomes were cross-referenced with analytical data to validate the FE models. At 10% weight fraction of bagasse fiber, the maximum elasticity modulus of the composite increases significantly by approximately 88% when aligned at 0° orientations, compared to the 90° orientation. Similarly, there's a noteworthy 67% improvement compared to the 45° orientation, maintaining the same bagasse fiber weight fraction. Longitudinal thermal conductivity increased with higher bagasse fiber weight fractions, while transverse thermal conductivity remained relatively constant despite changes in fiber volume. About 98% of the decrement in transverse thermal conductivity is observed compared to longitudinal conductivity at all the percentages of the fiber considered for the study. These findings underscore the significant impact of bagasse fiber orientation on both effective elasticity and thermal conductivity within these fiber-based structures.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3