An asymptotic modeling and resolution framework for morphology evolutions of multiple-period post-buckling modes in bilayers

Author:

Fu Chenbo1,Cheng Zhe1,Wang Ting1,Xu Fan2ORCID

Affiliation:

1. Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai, P.R. China

2. Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai, P.R. China; Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, P.R. China

Abstract

A stiff thin film bonded to a compliant substrate initially buckles into wrinkles, following with some intricate advanced instability modes when the compression exceeds higher thresholds. Here, we present an asymptotic modeling and resolution framework to quantitatively predict and continuously trace secondary bifurcation transitions in the non-linear post-buckling region. An advantage of this framework, besides its applicability to finite-strain deformations, is its asymptotic consistency with the three-dimensional (3D) field equations and interface continuity conditions in a pointwise manner. Based on our model, we reveal intricate post-buckling responses involving successive advanced mode transitions, i.e., period-doubling, period-tripling, period-quadrupling, ridge, and hierarchical wrinkles in film–substrate bilayers upon excess compression. Apart from modulus ratio, pre-stretch and pre-compression of the substrate can alter surface morphology of film–substrate bilayers. With substrate pre-compression, a bilayer may eventually involve into a period-tripling or period-quadrupling mode. We observe hierarchical wrinkles and ridges in films attached on pre-stretched substrates. With high substrate pre-tension and modulus ratio, a novel pattern, namely, periodic ridges, appears at the secondary bifurcation. Fundamental understanding and quantitative prediction of non-linear morphology evolutions of soft bilayers play important roles in rational designs of wrinkle-tunable functional surfaces.

Funder

Science and Technology Commission of Shanghai Municipality

Shanghai Rising-Star Program

National Natural Science Foundation of China

Shanghai Shuguang Program

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3