Building blocks that govern spontaneous and programmed pattern formation in pre-compressed bilayers

Author:

Shen Jiajia1ORCID,Pirrera Alberto1ORCID,Groh Rainer M. J.1ORCID

Affiliation:

1. Bristol Composites Institute (BCI), Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, UK

Abstract

Surface wrinkling in stiff-film/soft-substrate bilayers is a common phenomenon in biological systems and is increasingly being exploited in thin-film technology. While the onset of surface wrinkling in end-compressed bilayers is well understood, questions remain with regards to the evolution of the wrinkling pattern in the intermediate and deep post-wrinkling regimes, especially when the substrate is strongly pre-compressed. Here, we explore the bifurcation landscape of end-compressed bilayers with strongly pre-compressed substrates, using hyperelastic, plane strain finite-elements and generalized path-following algorithms. After bifurcating from a flat into a sinusoidally wrinkled state, bilayers undergo further n -tupling bifurcations into stable wrinkling patterns of longer wavelength whose periodicity n = { 4 , , 8 } is a function of overall bilayer length. These five n -tupling wrinkling patterns are shown to be independent localizations of the deformation mode and are accordingly identified as stable ‘building blocks’ that govern the intermediate post-wrinkling regime. Additional end-shortening into the deep post-wrinkling regime then leads to further period doubling and coalescence of the building blocks. Beyond a certain length threshold, a bilayer can form a combinatorial side-by-side arrangement of the five building blocks. In the limit of an infinitely long bilayer, this leads to the phenomenon known as spatial chaos with the emergence of an infinite set of possible wrinkling patterns. In reality, though, the precise side-by-side arrangement of the building blocks is governed by the initial conditions. We show that the morphological evolution of the wrinkling pattern can be programmed by a judicial placement of manufactured dents in the thin film, creating new manufacturing capabilities for textured bilayers.

Funder

Leverhulme Trust

Engineering and Physical Sciences Research Council

Royal Academy of Engineering

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3