Using Machine Learning to Infer Reasoning Provenance From User Interaction Log Data

Author:

Kodagoda Neesha1,Pontis Sheila2,Simmie Donal3,Attfield Simon,Wong B. L. William1,Blandford Ann2,Hankin Chris3

Affiliation:

1. Middlesex University

2. University College London

3. Imperial College London

Abstract

The reconstruction of analysts’ reasoning processes ( reasoning provenance) during complex sensemaking tasks can support reflection and decision making. One potential approach to such reconstruction is to automatically infer reasoning from low-level user interaction logs. We explore a novel method for doing this using machine learning. Two user studies were conducted in which participants performed similar intelligence analysis tasks. In one study, participants used a standard web browser and word processor; in the other, they used a system called INVISQUE (Interactive Visual Search and Query Environment). Interaction logs were manually coded for cognitive actions based on captured think-aloud protocol and posttask interviews based on Klein, Phillips, Rall, and Pelusos’s data/frame model of sensemaking as a conceptual framework. This analysis was then used to train an interaction frame mapper, which employed multiple machine learning models to learn relationships between the interaction logs and the codings. Our results show that, for one study at least, classification accuracy was significantly better than chance and compared reasonably to a reported manual provenance reconstruction method. We discuss our results in terms of variations in feature sets from the two studies and what this means for the development of the method for provenance capture and the evaluation of sensemaking systems.

Publisher

SAGE Publications

Subject

Applied Psychology,Engineering (miscellaneous),Computer Science Applications,Human Factors and Ergonomics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3