Automatic Assessment of Students’ Engineering Design Performance Using a Bayesian Network Model

Author:

Xing Wanli1ORCID,Li Chenglu1,Chen Guanhua2,Huang Xudong2ORCID,Chao Jie2,Massicotte Joyce2,Xie Charles2

Affiliation:

1. School of Teaching & Learning, College of Education, University of Florida, Gainesville, United States

2. The Concord Consortium, Concord, Massachusetts, United States

Abstract

Integrating engineering design into K-12 curricula is increasingly important as engineering has been incorporated into many STEM education standards. However, the ill-structured and open-ended nature of engineering design makes it difficult for an instructor to keep track of the design processes of all students simultaneously and provide personalized feedback on a timely basis. This study proposes a Bayesian network model to dynamically and automatically assess students’ engagement with engineering design tasks and to support formative feedback. Specifically, we applied a Bayesian network to 111 ninth-grade students’ process data logged by a computer-aided design software program that students used to solve an engineering design challenge. Evidence was extracted from the log files and fed into the Bayesian network to perform inferential reasoning and provide a barometer of their performance in the form of posterior probabilities. Results showed that the Bayesian network model was competent at predicting a student’s task performance. It performed well in both identifying students of a particular group (recall) and ensuring identified students were correctly labeled (precision). This study also suggests that Bayesian networks can be used to pinpoint a student’s strengths and weaknesses for applying relevant science knowledge to engineering design tasks. Future work of implementing this tool within the computer-aided design software will provide instructors a powerful tool to facilitate engineering design through automatically generating personalized feedback to students in real time.

Funder

Directorate for Education and Human Resources

Publisher

SAGE Publications

Subject

Computer Science Applications,Education

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3