CYP enzymes catalyze the formation of a terminal olefin from 2-ethylhexanoic acid in rat and human liver

Author:

Pennanen S.1,Kojo A.2,Pasanen M.2,Liesivuori J.3,Juvonen RO2,Komulainen H.4

Affiliation:

1. National Public Health Institute, Division of Environmental Health, P.O.B. 95, FIN-70701 Kuopio, Finland

2. Department of Pharmacology and Toxicology, University of Kuopio, P.O.B. 1627, FIN-70211, Kuopio, Finland

3. Kuopio Regional Institute of Occupational Health, P.O.B. 95, FIN-70701 Kuopio, Finland

4. National Public Health Institute, Division of Environmental Health, P.O.B. 95, FIN-70701 Kuopio, Finland, Department of Pharmacology and Toxicology, University of Kuopio, P.O.B. 1627, FIN-70211, Kuopio, Finland

Abstract

1 The metabolism of 2-ethylhexanoic acid (2-EHA) was studied in rat, mouse and human liver microsomes in vitro. The metabolites of 2-EHA were identified as methylated derivatives by gas chromatography-mass spectrometry. 2 2-Ethyl-1,6-hexanedioic acid was the main metabolite produced in rat, mouse and human liver microsomes. Unsaturated 2-ethyl-5-hexenoic acid, a terminal ole fin, was produced only in human liver microsomes and phenobarbital-induced rat liver microsomes. The cytochrome P450 (CYP) inhibitors metyrapone, SKF 525A, triacetyloleandomycin (TAO), quinidine and the cytochrome P450 reductase antibody abolished its formation both in rat and human microsomes. 3 The metabolites were analyzed also in vivo in urine of 2-EHA-exposed rats and in urine of sawmill workers exposed occupationally to 2-EHA. Both rat and human urine contained 2-ethyl-1,6-hexanedioic acid as the main metabolite and also 2-ethyl-5-hexenoic acid. Metyrapone, SKF 525A and TAO all decreased drastically the formation of 2-ethyl-5-hexenoic acid in the rat. 4 The data indicate that (1) several CYP families (CYP2A, CYP2B, CYP2D and CYP3A) could be responsible for the hepatic metabolism of 2-EHA, (2) the same metabolites were formed in rats and man and (3) an unsaturated terminal olefin, 2-ethyl-5-hexenoic acid is formed in the liver.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3