Output feedback control for overhead cranes subject to double-pendulum swing effects and uncertain disturbances

Author:

Lei Meizhen1,Wu Xianqing1ORCID,Zhao Yijiang1,Li Fang1

Affiliation:

1. School of Information Science and Engineering, Zhejiang Sci-Tech University, China

Abstract

In this paper, a disturbance-observer–based control approach is developed for overhead crane systems. Different from existing control strategies, the issues consisting of the output feedback, input saturation, double-pendulum dynamics, and uncertain disturbances are taken into consideration here. In particular, a disturbance observer is designed first, which can exactly estimate uncertain disturbances. Next, to enhance the performance of the controller, a virtual position signal is constructed and a corresponding Lyapunov function is introduced. Then, based on the provided Lyapunov function and the designed disturbance observer, a composite control approach is developed for overhead crane systems with double-pendulum dynamics and the convergence of the system states is proved via rigorous theoretical analysis. Finally, the effectiveness and robustness of the proposed control approach are verified by simulation tests.

Funder

Fundamental Research Funds of Zhejiang SciTech University

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3