Affiliation:
1. Research Center of Automation and Artificial Intelligence, Zhejiang University of Technology, PR China
2. Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
3. Chair Professor Institute of Artificial Intelligence and Future Networks, Beijing Normal University at Zhuhai, China; BNU-HKBU United International College, PR China
Abstract
Percutaneous puncture interventional therapy is an important method for pathological examination, local anesthesia, and local drug delivery in modern clinics. Due to the existence of complex obstacles such as nerves, arteries, bones and so on in the puncture path, it is a challenging work to design the optimal path for surgical needle. In this paper, we propose a new path planning method based on the adaptive intelligent particle swarm optimization (PSO) algorithm with parameter adjustment mechanism. First, force and motion analysis are carried out on the bevel-tip flexible needle after piercing into human tissues, the motion model of the needle and the spatial transformation model of puncture route in three-dimensional space are obtained, respectively. Then, a multi-objective function is established, which includes puncture path length function, puncture error function and collision detection function. Finally, the optimal puncture path is obtained based on the adaptive intelligent PSO algorithm. The simulation results show that the newly proposed path planning method has higher efficiency, better adaptability to complex environments and higher accuracy than other path planning methods in literature.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献