An improved nonlinear proportional-integral-differential controller combined with fractional operator and symbolic adaptation algorithm

Author:

Shi Lezhen1,Miao Xiaodong1,Wang Hua1

Affiliation:

1. School of Mechanical and Power Engineering, Nanjing Tech University, China

Abstract

Parameter adjustment is usually applied for designing the proportional-integral-differential (PID) controllers. However, the ability to improve control performance by adjusting parameters is limited. Hence, with the goal to achieve ideal closed-loop response, this paper takes advantage of a structural optimization method for modifying the controller model. A symbolic adaptation algorithm for fractional order PID (FOPID) controller is employed to obtain precise nonlinear controller model. Firstly, a modeling comparison for nonlinear duffing system is carried out to highlight the efficiency of the symbolic adaptation algorithm. The case study indicates the proposed algorithm can establish compact dynamic models by amending the shortcomings of symbolic regression. Secondly, the proposed controller is restructured with the linear FOPID controller and its nonlinearity is increased by adjusting controllers’ components in symbolic form. The proposed controllers are simulated in an unstable second-order system, a time-delay system and a nonlinear VanderPol system. Compared with the IOPID and the FOPID controller, the symbolic adaptation algorithm improves the structural flexibility of these linear controllers. Meanwhile, the system response can better approximate the desired response and the structural integrity of the nonlinear controller model is guaranteed simultaneously. Finally, the nonlinear FOPD controllers for trajectory tracking experiments are carried out on a rotary inverted pendulum control system.

Funder

Jiangsu provincial Six Talent Peaks

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3