Affiliation:
1. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, China
2. Department of Electrical Engineering, Tsinghua University, China
Abstract
Benefitting from the technology of integral reinforcement learning, the nonzero sum (NZS) game for distributed parameter systems is effectively solved in this paper when the information of system dynamics are unavailable. The Karhunen-Loève decomposition (KLD) is employed to convert the partial differential equation (PDE) systems into high-order ordinary differential equation (ODE) systems. Moreover, the off-policy IRL technology is introduced to design the optimal strategies for the NZS game. To confirm that the presented algorithm will converge to the optimal value functions, the traditional adaptive dynamic programming (ADP) method is first discussed. Then, the equivalence between the traditional ADP method and the presented off-policy method is proved. For implementing the presented off-policy IRL method, actor and critic neural networks are utilized to approach the value functions and control strategies in the iteration process, individually. Finally, a numerical simulation is shown to illustrate the effectiveness of the proposal off-policy algorithm.
Funder
National Natural Science Foundation of China
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献