Off-policy integral reinforcement learning algorithm in dealing with nonzero sum game for nonlinear distributed parameter systems

Author:

Ren He1,Dai Jing2,Zhang Huaguang1ORCID,Zhang Kun1ORCID

Affiliation:

1. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, China

2. Department of Electrical Engineering, Tsinghua University, China

Abstract

Benefitting from the technology of integral reinforcement learning, the nonzero sum (NZS) game for distributed parameter systems is effectively solved in this paper when the information of system dynamics are unavailable. The Karhunen-Loève decomposition (KLD) is employed to convert the partial differential equation (PDE) systems into high-order ordinary differential equation (ODE) systems. Moreover, the off-policy IRL technology is introduced to design the optimal strategies for the NZS game. To confirm that the presented algorithm will converge to the optimal value functions, the traditional adaptive dynamic programming (ADP) method is first discussed. Then, the equivalence between the traditional ADP method and the presented off-policy method is proved. For implementing the presented off-policy IRL method, actor and critic neural networks are utilized to approach the value functions and control strategies in the iteration process, individually. Finally, a numerical simulation is shown to illustrate the effectiveness of the proposal off-policy algorithm.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3