Sliding mode based fractional-order iterative learning control for a nonlinear robot manipulator with bounded disturbance

Author:

Ghasemi Iman1,Ranjbar Noei Abolfazl1,Sadati Jalil1

Affiliation:

1. Faculty of Electrical and Computer Engineering, Babol University of Technology, Iran

Abstract

In this paper a new type of sliding mode based fractional-order iterative learning control (ILC) is proposed for nonlinear systems in the presence of uncertainties. For the first time, a sliding mode controller is combined with fractional-order ILC. This sliding mode based [Formula: see text] and [Formula: see text]-type ILC is applied on a nonlinear robot manipulator. Convergence of the proposed method is investigated when the stability is also proved. In this method, the control signal at any iteration is generated in two parts. The first section comes from the sliding mode controller while the second part is output of the fractional-order ILC. The latter signal is assessed using its previous amount and the sliding mode error signal. The achieved control law is capable of controlling nonlinear iterative processes, perturbed by bounded disturbances with high accuracy. The same frequent disturbance is eliminated by the iterative learning part, while the effect of nonrepetitive uncertainty is improved by the sliding mode part. The sliding mode based [Formula: see text]-type ILC (as an adaptive control law) is proposed to control a single-link arm robot. The controller is then improved to sliding mode based [Formula: see text]-type ILC. The effectiveness of the proposed method is again investigated on a single-link robot manipulator through a simulation approach. It is shown that the controller for [Formula: see text] provides performance by means of faster response together with more accuracy with respect to a conventional ILC.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3