Adaptive neural formation control of autonomous underactuated surface vessels based on disturbance observer with leader–follower strategy

Author:

Wu Chunqiang1ORCID,Zhao Meijiao1ORCID,Min Cheng1,Wang Yueying1,Luo Jun1

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, China

Abstract

In this paper, a leader–follower formation control strategy is presented based on adaptive neural network and disturbance observer, which is aimed at resolving model uncertainties as well as the time-varying disturbances for autonomous underactuated surface vessels. The model uncertainties which can be expressed by unknown nonlinear functions are approximated and compensated by the adaptive neural network. The disturbance observer introduced can estimate time-varying disturbances and compensate them to the feedforward control loop, so as to make the external time-varying disturbances suppressed and the robustness of controller against the disturbances improved. The dynamic surface control technology is applied in the procedure of designing the controller through utilizing the backstepping method, which solves the computational explosion of the derivative of virtual control signals. Finally, through Lyapunov analysis, the stability of adaptive neural formation control system is proved and all the error signals uniformly converge to a very small range ultimately. The excellent performance of the presented formation control strategy is demonstrated through numerical simulations.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3