Applying Big Data visualization to detect trends in 30 years of performance reports

Author:

Raveh Eran1,Ofek Yuval1ORCID,Bekkerman Ron1,Cohen Hertzel1

Affiliation:

1. University of Haifa, Israel

Abstract

Evaluators worldwide are dealing with a growing amount of unstructured electronic data, predominantly in textual format. Currently, evaluators analyze textual Big Data primarily using traditional content analysis methods based on keyword search, a practice that is limited to iterating over predefined concepts. But what if evaluators cannot define the necessary keywords for their analysis? Often we should examine trends in the way certain organizations have been operating, while our raw data are gigabytes of documents generated by that organization over decades. The problem is that in many cases we do not know what exactly we need to look for. In such cases, traditional analytical machinery would not provide an adequate solution within reasonable time—instead, heavy-lifting Big Data Science should be applied. We propose an automated, quantitative, user-friendly methodology based on text mining, machine learning, and data visualization, which assists researchers and evaluation practitioners to reveal trends, trajectories, and interrelations between bits and pieces of textual information in order to support evaluation. Our system automatically extracts a large amount of descriptive terminology for a particular domain in a given language, finds semantic connections between documents based on the extracted terminology, visualizes the entire document repository as a graph of semantic connections, and leads the user to the areas on that graph where most interesting trends can be observed. This article exemplifies the new method on 1700 performance reports, showing that the method can be used successfully, supplying evaluators with highly important information which cannot be revealed using other methods. Such exploratory exercise is vital as a preliminary exploratory phase for evaluations involving unstructured Big Data, after which a range of evaluation methods can be applied. We argue that our system can be successfully implemented on any domain evaluated.

Publisher

SAGE Publications

Subject

Sociology and Political Science,Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3