Affiliation:
1. School of Business and Administration, Anhui University of Finance and Economics, Bengbu 233030, China
Abstract
Establishing a rapid-response mechanism to manage customer orders is very important in managing demand surges. In this study, combined with predicting order requests, we established a multiobjective optimization model to solve the warehouse space allocation problem. First, we developed a model based on the NAR neural network to predict order requests. Subsequently, we used the improved NSGA-III based on good point set theory to construct a multiobjective optimization model to minimize resource loss, maximize efficiency in goods selection, and maximize goods accumulation. The following three modes were tested to allocate warehouse storage space: random, ABC, and prediction-oriented. Finally, using actual order data, we conducted a comparative analysis of the three modes regarding their efficiency in goods selection. The method proposed by this study improved goods selection efficiency by a sizable margin (23.8%).
Subject
Multidisciplinary,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. OS-Net: A novel oriented ship detector based on RetinaNet;2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA);2023-02-24