Intelligent Recognition and Teaching of English Fuzzy Texts Based on Fuzzy Computing and Big Data

Author:

Liu Ling1ORCID,Tsai Sang-Bing2ORCID

Affiliation:

1. School of Foreign Languages, Gannan University, Ganzhou, Jiangxi 341000, China

2. Regional Green Economy Development Research Center, School of Business, Wuyi University, China

Abstract

In this paper, we conduct in-depth research and analysis on the intelligent recognition and teaching of English fuzzy text through parallel projection and region expansion. Multisense Soft Cluster Vector (MSCVec), a multisense word vector model based on nonnegative matrix decomposition and sparse soft clustering, is constructed. The MSCVec model is a monolingual word vector model, which uses nonnegative matrix decomposition of positive point mutual information between words and contexts to extract low-rank expressions of mixed semantics of multisense words and then uses sparse. It uses the nonnegative matrix decomposition of the positive pointwise mutual information between words and contexts to extract the low-rank expressions of the mixed semantics of the polysemous words and then uses the sparse soft clustering algorithm to partition the multiple word senses of the polysemous words and also obtains the global sense of the polysemous word affiliation distribution; the specific polysemous word cluster classes are determined based on the negative mean log-likelihood of the global affiliation between the contextual semantics and the polysemous words, and finally, the polysemous word vectors are learned using the Fast text model under the extended dictionary word set. The advantage of the MSCVec model is that it is an unsupervised learning process without any knowledge base, and the substring representation in the model ensures the generation of unregistered word vectors; in addition, the global affiliation of the MSCVec model can also expect polysemantic word vectors to single word vectors. Compared with the traditional static word vectors, MSCVec shows excellent results in both word similarity and downstream text classification task experiments. The two sets of features are then fused and extended into new semantic features, and similarity classification experiments and stack generalization experiments are designed for comparison. In the cross-lingual sentence-level similarity detection task, SCLVec cross-lingual word vector lexical-level features outperform MSCVec multisense word vector features as the input embedding layer; deep semantic sentence-level features trained by twin recurrent neural networks outperform the semantic features of twin convolutional neural networks; extensions of traditional statistical features can effectively improve cross-lingual similarity detection performance, especially cross-lingual topic model (BL-LDA); the stack generalization integration approach maximizes the error rate of the underlying classifier and improves the detection accuracy.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3