A hybrid intelligence technique based on the Taguchi method for multi-objective process parameter optimization of the 3D additive screen printing of athletic shoes

Author:

Wang Yacheng1ORCID,Liu Yuegang1,Sun Yize1

Affiliation:

1. College of Mechanical Engineering, Donghua University, China

Abstract

This paper presents a hybrid intelligence technique based on the Taguchi method for multi-objective process parameter optimization of 3D additive screen printing of athletic shoes. 3D additive screen printing is mainly used in the high-end athletic shoes and clothes field. It requires overlapping and overprinting dozens of times to make the printed patterns stereoscopic. The process of 3D additive screen printing is complex and variable and the production cycle is long. Because of the variability of the screen printing process and the coupling between process parameters, there is no simple method to guide the trial production of new products and obtain the optimal process parameters of screen printing. Trial-and-error is often used but it expends a lot of manpower, materials, and financial resources. To solve the optimization problem, a Taguchi experiment based on fuzzy comprehensive evaluation with five factors and two responses was first designed. Then, a back-propagation network (BPN), least-squares support-vector machine (LSSVM), and random forest (RF) were trained with experimental data to obtain a forecasting model for the process parameters. On comparison, the RF forecasting model performed best in this case. Then, the multi-objective antlion optimizer (MOALO), which is a new multi-objective optimization algorithm with excellent performance, was improved to the IMOALO, and it was proved that IMOALO has a better performance than MOALO. Combining the RF forecasting model with IMOALO, and carrying out the optimization, the optimal process parameters were obtained. Actual printing production shows that the proposed hybrid intelligence technique improves the production efficiency and first pass yield of printed products.

Funder

the Fundamental Research Funds for the Central Universities

The rolling support plan for the excellent innovation teams by Ministry of Education of the People's Republic of China

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3