Algorithm for measuring fiber length distributions of raw cotton and combed wool using dual-beard image method

Author:

Lang Chenhong1,Wu Meiqin2ORCID,Pan Xingxing3,Jin Jingye1ORCID,Wang Fumei4,Xu Bugao5,Qiu Yiping14

Affiliation:

1. College of Textiles and Apparel, Quanzhou Normal University, Quanzhou, Fujian, China

2. College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China

3. Fujian Provincial Key Laboratory of Textiles Inspection Technology (Fujian Fiber Inspection Bureau), Fuzhou, Fujian, China

4. College of Textiles, Donghua University, Shanghai, China

5. Department of Merchandising and Digital Retailing, University of North Texas, Denton, TX, USA

Abstract

The dual-beard image method, which has been developed in recent years as a fast and economical method for fiber length measurement, consists of dual-beard specimen preparation, image processing, fibrogram extraction, and length parameter calculations. However, one of the shortcomings of this method is that it can only produce extremely limited length parameters such as mean length, coefficient of variation, modal length, and quality length (UHML, upper half mean length). This study introduces a new algorithm for converting the dual-beard fibrogram into a length distribution histogram which can be used to calculate most of the current length parameters. The algorithm is based on the short fiber content formulae but modified by theoretical analysis and experimental comparison. The length distributions of 24 cotton samples and 12 wool samples are measured by dual-beard image method with the new algorithm, and Advanced Fiber Information System (AFIS) and Almeter are employed for comparison. Comparative analysis shows that the peaks and ranges of the distribution histograms using the dual-beard method are similar to those from the reference methods, and the shapes of histograms from difference methods match well with one another. In addition, five length parameters calculated from the dual-beard distributions are verified to be consistent with those measured by AFIS and Almeter. The new algorithm employed in the dual-beard image method avoids the differential operation which amplifies the curve error, giving the dual-beard image method the ability to output more comprehensive length information.

Funder

Fujian Provincial Key Laboratory of Textiles Inspection Technology (Fujian Fiber Inspection Bureau), China

National Natural Science Foundation of China

Natural Science Foundation (Youth Innovation) of Fujian Province, China

Quanzhou City Science & Technology Program of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3