Effects of harvesting and ginning practices on Southern High Plains cotton: fiber quality

Author:

Wanjura John D1ORCID,Armijo Carlos B2,Delhom Christopher D3ORCID,Boman Randal K4,Faulkner William B5,Holt Gregory A1,Pelletier Mathew G1

Affiliation:

1. USDA-ARS Cotton Production and Processing Research Unit, USA

2. USDA-ARS Southwestern Cotton Ginning Research Laboratory, USA

3. USDA-ARS Cotton Structure and Quality Research Unit, USA

4. Oklahoma State University, Department of Plant and Soil Sciences, USA

5. Texas A&M University, Department of Biological and Agricultural Engineering, USA

Abstract

The lint yield and fiber quality of cotton produced in the Southern High Plains of the USA have improved over the last decade, renewing interest in finding harvest and ginning practices that better preserve fiber quality. Previous research showed that picker harvesting and roller ginning may better preserve fiber quality, but conventional roller ginning was too slow to be adopted as the primary ginning system used for Upland cotton. Advancements in roller ginning technology have increased the ginning rate per unit width of rotary-knife roller gins to approximately equal that of saw gins. Research has shown that improvements in nep content and fiber length characteristics afforded by conventional roller ginning compared to saw ginning are maintained by the new high-speed roller gins (HSRGs). The objective of this work was to compare the fiber quality, seed quality, ginning rate, and lint turnout of Upland cotton produced in the Southern High Plains, harvested using a picker or a stripper, and ginned using saw or HSRG systems. The findings of this work indicate that the HSRG substantially improved the length characteristics of the Upland cultivars tested regardless of harvest method. Turnout was higher for the HSRG and for picker harvested cotton. Nep content was reduced for picker harvested cotton and the HSRG. The fiber length distribution and nep content improvements from the HSRG system make this fiber more attractive to ring spinning mills that produce high-count yarns for high-value products.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3