In situ measurement of the dynamic yarn path in a turbo ring spinning process based on the superconducting magnetic bearing twisting system

Author:

Hossain M1ORCID,Sparing M2,Espenhahn T2,Abdkader A1,Cherif C1,Hühne R2,Nielsch K2

Affiliation:

1. Technische Universität Dresden, Faculty of mechanical Engineering, Institute of Textile Machinery and High Performance Material Technology (ITM), Germany

2. IFW Dresden, Institute for Metallic Materials, Germany

Abstract

The yarn tension and balloon form are the most important physical process parameters to characterize the dynamic yarn path in ring spinning. The present research work focuses on the in situ measurement of yarn tension in different regions of the yarn path in a developed turbo ring spinning tester with a friction-free superconducting magnetic bearing (SMB) twisting system and at an angular spindle speed of up to 50,000 rpm. The influence of different parameters, such as angular spindle speeds (15,000–50,000 rpm), yarn counts (15–40 tex) and balloon control ring (one or multiple), were evaluated to identify the influence of acting forces, for example, centrifugal forces. The effects of these process parameters were analyzed statistically using an analysis of variance. The yarn tension between the delivery rollers and the yarn guide was measured using a modified one-roller tensile yarn tension sensor. The yarn tension between the yarn guide and the SMB system was determined with an already existing optical approach at a higher angular spindle speed. As the highest yarn tension theoretically occurs between the SMB system and the cop, it was estimated in this region by measuring the coefficient of friction between the yarn and the yarn guide using the friction module of the constant tension tester equipment. The maximum balloon diameter was determined from the recorded balloon form between the yarn guide and the SMB system with respect to different angular spindle speeds. The results provide valuable information about the highest possible spinnable speed and enable a better understanding of the dynamic yarn path in the SMB spinning system.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3