A critical review on recent developments and solutions in the high-speed ring spinning process

Author:

Abdkader A1,Hossain M1ORCID

Affiliation:

1. Institute of Textile Machinery and High Performance Material (ITM), Faculty of Mechanical Science and Engineering, Technische Universität Dresden (TUD), Germany

Abstract

Twist plays an important role in textile technology, particularly in the production of staple yarn structures. Due to the higher yarn quality and flexibility of the process, most short staple fiber yarns are produced in the ring spinning process in comparison to other high-speed spinning processes, such as rotor or air jet spinning. To impart twist in the yarn, the ring/traveler system, rotor and air jet nozzle are used in the ring, rotor and air jet spinning processes respectively. However, the productivity of the ring spinning process is limited significantly due to the frictional heat generated between the ring and traveler, especially at higher angular spindle speeds, which is crucial for the spinning of man-made fibers. This paper aims to describe the recent developments and solutions for increasing productivity in the ring spinning process in a systemic way. To reduce the friction, different topologies and surface modifications in the ring/traveler system were made to increase the angular spindle speed of maximum 23,000 rpm. To eliminate the friction, the twisting element was made of an air bearing or magnetically elevated rings were developed by replacing the ring/traveler system completely, thus permitting a higher angular spindle speed of up to 50,000 rpm. Further approaches deal with cap, loop and nova spinning or Nu-Torque technology to reduce yarn tension or residual torque in the yarn, respectively. The results of the presented work reveal the potential of different developments, especially in the field of twisting system, so that the productivity of ring spinning can be increased drastically.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Reference85 articles.

1. ITMSS: International textile machinery shipment statistics – Vol. 45/2022. Annual report, Zürich, 2023.

2. A study of peeling-off tension in rotor spinning and its dependence on rotor and fibre variables part I: theoretical

3. Textile Werkstoffe für den Leichtbau

4. null

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3