ARTIFICIAL NEURAL NETWORKS TO ENHANCE THE RING MACHINE EFFICIENCY AND YARN QUALITY BY DETERMINATION AND OPTIMIZATION OF DYNAMIC YARN TENSION

Author:

FAROOQ Assad1,KHAN Nayab1,AWAİS Muhammad2,AHMAD Khalil3,MOHSİN Muhammad3,AKHTAR Usama3,HUSSAIN Fiaz1

Affiliation:

1. University of Agriculture Faisalabad,

2. University of Agriculture

3. Shahzad Textile Mills Ltd

Abstract

The yarn spinning process involves the interaction of large varieties of variables. The relation between the dynamic yarn tension (DYT), yarn quality, and production efficiency of the spinning frame cannot be established conclusively. Artificial neural network (ANN) is a promising step in this filed. In this research work, ANNs simulation and modeling is applied for the optimization of the DYT n to improve the production efficiency and quality of yarn. The research to date in DYT is insufficient to meet the developmental requirement of the high-speed and efficient ring spinning frame. One of the major problems facing the effective use of the ANN is the correct selection of the input parameters to be fed for the training of ANNs. Data of various input variables such as count, traveler no., spindle speed and dynamic yarn tension etc., was used for ANN modeling and simulation. DYT plays a significant role in the determination of yarn quality and its productivity in terms of end breakage rate. However, it has never been explained in terms of displacement from the original yarn path. This work is aimed to the determination and optimization of DYT at ring spinning frame. The influence of different yarn geometry parameters on DYT, measured by the tensiometer was investigated. The optimized DYT values for the machines, running at different speed and different counts were determined using ANN modeling. It is found that the optimized values predicted from ANN resulted in better quality, high production, and decreased end-breakage at industrial ring spinning frames. By the implementation of ANNs the optimum speed and effective utilization of textile raw materials can be achieved.

Funder

Higher Education Commission of Pakistan

Publisher

UCTEA Chamber of Textile Engineers

Subject

Industrial and Manufacturing Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3