Deselection of base-learners for statistical boosting—with an application to distributional regression

Author:

Strömer Annika1ORCID,Staerk Christian1,Klein Nadja2,Weinhold Leonie1,Titze Stephanie3,Mayr Andreas1ORCID

Affiliation:

1. Department of Medical Biometrics, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Germany

2. Emmy Noether Research Group in Statistics and Data Science, Humboldt-Universität zu Berlin, Germany

3. Department of Nephrology and Hypertension, FAU Erlangen-Nuremberg, Germany

Abstract

We present a new procedure for enhanced variable selection for component-wise gradient boosting. Statistical boosting is a computational approach that emerged from machine learning, which allows to fit regression models in the presence of high-dimensional data. Furthermore, the algorithm can lead to data-driven variable selection. In practice, however, the final models typically tend to include too many variables in some situations. This occurs particularly for low-dimensional data ([Formula: see text]), where we observe a slow overfitting behavior of boosting. As a result, more variables get included into the final model without altering the prediction accuracy. Many of these false positives are incorporated with a small coefficient and therefore have a small impact, but lead to a larger model. We try to overcome this issue by giving the algorithm the chance to deselect base-learners with minor importance. We analyze the impact of the new approach on variable selection and prediction performance in comparison to alternative methods including boosting with earlier stopping as well as twin boosting. We illustrate our approach with data of an ongoing cohort study for chronic kidney disease patients, where the most influential predictors for the health-related quality of life measure are selected in a distributional regression approach based on beta regression.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3