Prediction-based variable selection for component-wise gradient boosting

Author:

Potts Sophie1,Bergherr Elisabeth1,Reinke Constantin2,Griesbach Colin1

Affiliation:

1. Chair of Spatial Data Science and Statistical Learning , University of Goettingen , Goettingen , Germany

2. Chair of Empirical Methods in Social Science and Demography , University of Rostock , Rostock , Germany

Abstract

Abstract Model-based component-wise gradient boosting is a popular tool for data-driven variable selection. In order to improve its prediction and selection qualities even further, several modifications of the original algorithm have been developed, that mainly focus on different stopping criteria, leaving the actual variable selection mechanism untouched. We investigate different prediction-based mechanisms for the variable selection step in model-based component-wise gradient boosting. These approaches include Akaikes Information Criterion (AIC) as well as a selection rule relying on the component-wise test error computed via cross-validation. We implemented the AIC and cross-validation routines for Generalized Linear Models and evaluated them regarding their variable selection properties and predictive performance. An extensive simulation study revealed improved selection properties whereas the prediction error could be lowered in a real world application with age-standardized COVID-19 incidence rates.

Funder

Deutsche Forschungsgemeinschaft

Volkswagen Foundation

codeocean capsule

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3