Robust gradient boosting for generalized additive models for location, scale and shape

Author:

Speller Jan,Staerk Christian,Gude Francisco,Mayr AndreasORCID

Abstract

AbstractDue to the increasing complexity and dimensionality of data sources, it is favorable that methodological approaches yield robust results so that corrupted observations do not jeopardize overall conclusions. We propose a modelling approach which is robust towards outliers in the response variable for generalized additive models for location, scale and shape (GAMLSS). We extend a recently proposed robustification of the log-likelihood to gradient boosting for GAMLSS, which is based on trimming low log-likelihood values via a log-logistic function to a boundary depending on a robustness constant. We recommend a data-driven choice for the involved robustness constant based on a quantile of the unconditioned response variable and investigate the choice in a simulation study for low- and high-dimensional data situations. The versatile application possibilities of robust gradient boosting for GAMLSS are illustrated via three biomedical examples—including the modelling of thyroid hormone levels, spatial effects for functional magnetic resonance brain imaging and a high-dimensional application with gene expression levels for cancer cell lines.

Funder

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3