Estimation of regression quantiles in complex surveys with data missing at random: An application to birthweight determinants

Author:

Geraci Marco1

Affiliation:

1. Centre for Paediatric Epidemiology and Biostatistics, Institute of Child Health, University College London, UK

Abstract

The estimation of population parameters using complex survey data requires careful statistical modelling to account for the design features. This is further complicated by unit and item nonresponse for which a number of methods have been developed in order to reduce estimation bias. In this paper, we address some issues that arise when the target of the inference (i.e. the analysis model or model of interest) is the conditional quantile of a continuous outcome. Survey design variables are duly included in the analysis and a bootstrap variance estimation approach is proposed. Missing data are multiply imputed by means of chained equations. In particular, imputation of continuous variables is based on their empirical distribution, conditional on all other variables in the analysis. This method preserves the distributional relationships in the data, including conditional skewness and kurtosis, and successfully handles bounded outcomes. Our motivating study concerns the analysis of birthweight determinants in a large UK-based cohort of children. A novel finding on the parental conflict theory is reported. R code implementing these procedures is provided.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3