Copula-based pairwise estimator for quantile regression with hierarchical missing data

Author:

Verhasselt Anneleen1,Flórez Alvaro J.12,Molenberghs Geert13,Van Keilegom Ingrid4

Affiliation:

1. Data Science Institute, I-Biostat, Universiteit Hasselt, Diepenbeek, Belgium

2. School of Statistics, Universidad del Valle, Cali, Colombia

3. I-BioStat, KU Leuven, Leuven, Belgium

4. ORSTAT, KU Leuven, Leuven, Belgium

Abstract

Quantile regression can be a helpful technique for analysing clustered (such as longitudinal) data. It can characterize the change in response over time without making distributional assumptions and is robust to outliers in the response. A quantile regression model using a copula-based multivariate asymmetric Laplace distribution for addressing correlation due to clustering is introduced. Furthermore, we propose a pairwise estimator for the parameters of the model. Since it is based on pseudo-likelihood, it needs to be modified to avoid bias in presence of missingness. Therefore, we enhance the model with inverse probability weighting. In this way, our proposal is unbiased under the missing at random assumption. Based on simulations, the estimator is efficient and computationally fast. Finally, the methodology is illustrated using a study in ophthalmology.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3