Bayesian Quantile Regression Models for Complex Survey Data Under Informative Sampling

Author:

Nascimento Marcus L1ORCID,Gonçalves Kelly C M2

Affiliation:

1. Departamento de Pesquisa, Fundação José Luiz Egydio Setúbal, São Paulo , Brazil and Departamento de Métodos Estatísticos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

2. Departamento de Métodos Estatísticos, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil

Abstract

Abstract The interest in considering the relation among random variables in quantiles instead of the mean has emerged in various fields, and data collected from complex survey designs are of fundamental importance to different areas. Despite the extensive literature on survey data analysis and quantile regression models, research papers exploring quantile regression estimation accounting for an informative design have primarily been restricted to a frequentist framework. In this paper, we introduce different Bayesian methods relying on the survey-weighted estimator and the estimating equations. A model-based simulation study evaluates the proposed methods compared to alternative approaches and a naïve model fitting ignoring the informative sampling design under different scenarios. In addition, we illustrate and conduct a prior sensitivity analysis in a design-based simulation study that uses data from Prova Brasil 2011.

Publisher

Oxford University Press (OUP)

Reference61 articles.

1. General Multi-Level Modeling with Sampling Weights;Asparouhov;Communications in Statistics—Theory and Methods,2006

2. A New Approach to Weighting and Inference in Sample Surveys;Beaumont;Biometrika,2008

3. bayesQR: A Bayesian Approach to Quantile Regression;Benoit;Journal of Statistical Software,2017

4. On the Variances of Asymptotically Normal Estimators from Complex Surveys;Binder;International Statistical Review,1983

5. Why Brazil Fell behind in College Education?;Binelli;Economics of Education Review,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3