Numerical analysis of the effect of the blade number on the hydrodynamic performance of shaftless rim-driven thruster

Author:

Jiang Wen1ORCID,Shen Xin2,Liu Liangliang1,Bian Tao13ORCID

Affiliation:

1. School of Intelligent Manufacturing, Jianghan University, Wuhan, China

2. School of Foreign Languages, Wuhan Business University, Wuhan, China

3. Guangdong HUST Industrial Technology Research Institute, Dongguan, China

Abstract

In this work, numerical investigations were performed to the study the effect of blade number on the hydrodynamic performance of shaftless Rim-driven Thruster (RDT) with certain blade area ratio and pitch ratio. The work investigated and compared the thrust coefficient, torque coefficient and efficiency of the RDTs with different blade numbers. Additionally, this work detected and analyzed the pressure distribution on the blade surface and velocity distribution around the blade and in the wake. The results demonstrate that for a certain advance coefficient, the thrust coefficient and torque coefficient of the RDT increase with the blade number, however the efficiency of the RDT decreases with the increase of blade number. For the same cross-section and advance coefficient, the 7-blade RDT has higher thrust and torque than the 3-blade RDT due to the large friction and pressure difference between the suction and pressure surfaces. The high velocity of both RDTs appears at the junction between each blade and the duct, and the 7-blade RDT has higher velocity in the wake and in the cross-section than the 3-blade RDT. The 3-blade RDT has the high pressure at the leading edge on the suction surface of each blade. However, the 7-blade RDT has not only the high pressure at the leading edge, but also the high negative pressure at the blade root on the suction surface of each blade, so 7-blade RDT has higher torque that 3-blade RDT.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical analysis of the effect of the duct geometry on the hydrodynamic performance of rim-driven thruster;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2024-04-08

2. Advancements and Applications of Rim-Driven Fans in Aerial Vehicles: A Comprehensive Review;Applied Sciences;2023-11-20

3. Improved efficiency with concave cavities on S3 surface of a rim-driven thruster;Physics of Fluids;2023-10-01

4. A Study on the Wake Evolution of a Set of RIM-Driven Thrusters;Journal of Marine Science and Engineering;2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3