Improved efficiency with concave cavities on S3 surface of a rim-driven thruster

Author:

Li PengORCID,Yao Hua-DongORCID,Wang ChaoORCID,Weng KaiqiangORCID

Abstract

Rim-driven thrusters (RDT) are of great interest for the development of integrated electric motors for underwater vehicles. Gap flow is one of the most prominent flow characteristics and plays an important role in the hydrodynamic performance of RDT. In this study, the rim in a carefully designed RDT was modified with several concave cavities defined by four parameters, and their influence on hydrodynamics was carefully calculated and analyzed. The simulations were performed using the k-ω shear stress transport turbulence model by solving the unsteady Reynolds-averaged Navier–Stokes equations. The numerical method was verified using a popular combination. The numerical results showed that the concave cavities on the rim improve the propulsive efficiency of RDT by a maximum of 3.52%. The increase in the propulsive efficiency is directly associated with the parameters of the concave cavities. Nevertheless, the flow in the gap has a negligible effect on the main flow field through the RDT. According to the numerical analysis, the different pressure integrals at the front and back surfaces of the concave cavities are the main reason for the improvement of the propulsive efficiency. The modification of the rim is helpful and practical for the hydrodynamic optimization of the RDT.

Funder

the National Science Foundation of China

the Key Laboratory Fund for Equipment Pre-research

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3