The verbalization of numbers: An explainable framework for tourism online reviews

Author:

De Nicolò Francesco12ORCID,Bellantuono Loredana34,Borzì Dario5,Bregonzio Matteo5,Cilli Roberto2,De Marco Leone5,Lombardi Angela24,Pantaleo Ester24,Petruzzellis Luca2,Shashaj Ariona6,Tangaro Sabina47,Monaco Alfonso4,Amoroso Nicola48,Bellotti Roberto24

Affiliation:

1. Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Bari, Italy

2. Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy

3. Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Università degli Studi di Bari Aldo Moro, Bari, Italy

4. Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Bari, Italy

5. 3rdPlace SRL, Milano, Italy

6. Network Contacts SRL, Molfetta, Italy

7. Dipartimento di Scienze del Suolo e della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy

8. Dipartimento di Farmacia e Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy

Abstract

Online reviews have been found very useful in decision-making. It is important to design and implement accurate systems to analyze the reviews and, based on textual information, predict their ratings. Given the different sources, languages and evaluating systems, intelligent systems are needed to use textual and numerical reviews to better understand the evaluation of the tourist experience and derive useful information to improve the offer. This paper aims to present an eXplainable Artificial Intelligence framework that contributes to the discussion on numerical and textual evaluations of the hospitality experience. It combines sentiment analysis and machine learning to accurately model and explain the evaluation of the tourist experience. The main findings are that review ratings should be used with caution and accompanied by a sentiment evaluation and explainability plays a central role in identifying which are the key concepts of positive or negative ratings, providing invaluable intelligence about the tourist experience.

Funder

Regione Puglia

Publisher

SAGE Publications

Subject

Management Science and Operations Research,Organizational Behavior and Human Resource Management

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning applied to tourism: A systematic review;WIREs Data Mining and Knowledge Discovery;2024-07-04

2. The impact of changes in sales promotion depth on consumers’ purchase intentions in an e-commerce environment;Enterprise Information Systems;2024-05-02

3. Interdisciplinary Approach to Winepreferences: Case of North Croatia;Interdisciplinary Description of Complex Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3