Effect of the unstable vibration of the disc brake system of high-speed trains on wheel polygonalization

Author:

Wu BW1ORCID,Qiao QF2,Chen GX1ORCID,Lv JZ1,Zhu Q1,Zhao XN1,Ouyang H3

Affiliation:

1. State Key Laboratory of Traction Power, Tribology Research Institute, Southwest Jiaotong University, Chengdu, China

2. CRRC Qingdao Sifang Locomotive & Rolling Stock Co., Ltd., Qingdao, China

3. School of Engineering, University of Liverpool, Liverpool, UK

Abstract

This paper conducts a detailed investigation into the formation mechanism of wheel polygonalization in high-speed trains and its influence factors through numerical simulation. A finite element model including two rails, one wheelset, and three disc brake units is set up to study the formation mechanism of wheel polygonalization in high-speed trains based on the point of view of frictional self-excited vibration. Using the finite element complex analysis, the dynamic stability of the wheelset–track–disc brake system is studied. In addition, the influence factors on the wheel polygonalization are investigated. Results show that when the longitudinal creep force is unsaturated, the 21-order polygonal wear of wheels occurs easily due to the self-excited vibration of the disc brake unit. When the longitudinal creep force is saturated, the 12-order polygonal wear of wheels probably occurs due to the self-excited vibration of the disc brake unit. The bigger the friction coefficient between the brake disc and pad, the greater the occurrence propensity of the polygonal wear of wheels. Vertical fastener damping that is too large or too small is disadvantageous for suppressing wheel corrugation. However, increasing the lateral fastener damping is beneficial for reducing the polygonal wear of wheels. When the vertical fastener stiffness is 25 MN/m, 7-order, 9-order, and 14-order wheel polygonalization can easily occur. A higher lateral fastener stiffness is beneficial for the suppression of wheel polygonalization.

Funder

Study on the generation mechanism for polygonalization of wheel treads of high-speed trains based on wheel-rail slip contact

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3