Optimal profile design for rail grinding based on wheel–rail contact, stability, and wear development in high-speed electric multiple units

Author:

Xu Kai12,Feng Zheng2,Wu Hao3ORCID,Xu Dongri4,Li Fu1,Shao Chenhui2ORCID

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China

2. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Illinois, USA

3. Traction Power State Key Laboratory, Southwest Jiaotong University, Chengdu, China

4. National Engineering Research Center of Railway Vehicles, CRRC Changchun Railway Vehicle Co., Ltd., Changchun, China

Abstract

High-speed electric multiple units have numerous advantages. However, a number of critical maintenance issues arise in the operation of high-speed electric multiple units. The previous researches about rail profile design usually take only a single type of wheel profile into account, which would cause some other problems such as severe increase of hollow wear on the wheels. This study systematically investigates the influence of rail grinding on running stability and wear development in high-speed electric multiple units and designs a new rail profile as reference for grinding that takes all types of vehicle wheels running on a specific line into account, in order to design a ground rail which could match the wheel profile and thus improve the running stability of electric multiple units. All types of wheel profiles used on the Wuhan–Guangzhou railway line are taken as the design reference. A wheel–rail wear simulation program is constructed based on CONTACT numerical simulation software and SIMPACK vehicle system dynamics software. The simulation results show that both the wheel–rail contact relationship and the running stability of high-speed electric multiple units improved after rail grinding. The results of the wheel wear analysis show that when the rail is ground to the target profile, after a running mileage of 200,000 km, the wear area of the new wheel profile LMA and the greatest hollow wear wheel profile LMA-25 decreases by 1.13 mm2 and 9.86 mm2, respectively. In addition, this method can prolong the wheel reprofiling interval. For the Wuhan–Guangzhou railway line, normally the grinding interval for the tangent track and large-radius curve is 2–3 years, and for the entering and exiting tunnel sections, the grinding interval should be set for 1–2 years, which could remove the damaged layer of the rail surface and could restore the designed profile of the rail and prolong the rail service life.

Funder

National Key R & D Program of China: Host Fellowships

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3