Analysis on new semi-active control strategies to reduce lateral vibrations of high-speed trains by simulation and hardware-in-the-loop testing

Author:

Zhao Yiwei12ORCID,Liu Yongqiang13ORCID,Yang Shaopu13,Liao Yingying14,Chen Zuchen12

Affiliation:

1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, China

2. School of Transportation, Shijiazhuang Tiedao University, Shijiazhuang, China

3. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, China

4. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, China

Abstract

In order to further reduce the vibration of vehicles and simultaneously increase ride comfort, a class of new control strategies, namely, the extension of Rakheja-Sankar (RS) control, is proposed for semi-active suspension systems with magnetorheological (MR) dampers of high-speed trains. At first, the design and analysis of semi-active control strategies are conducted in a quarter railway lateral model considering the node stiffness. Secondly, a whole vehicle model of a high-speed train is constructed by using Universal Mechanism (UM) software to be applied in evaluating semi-active control strategies. Finally, a hardware-in-the-loop (HIL) test system is carried out to verify the performance of the new control strategies. During these processes, the transmission characteristics are calculated and compared, which helps to test the performance of the semi-active control strategy on train vibration suppression. Then, the effect of the control strategies on the dynamic performance of the whole vehicle is studied. The ride comfort under different control strategies is compared, and the effects of different semi-active control strategies on the lateral stability and safety of trains are also analyzed. Through simulations and experiments, it is confirmed that the new control strategies can effectively reduce the lateral vibration of trains and therefore contribute to the improvement of ride comfort while they do not significantly reduce the train running stability and safety. Therefore, the new control strategies possess future application value.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3