Coupled finite element and multibody systems dynamics modelling for the investigation of the bridge approach problem

Author:

El-Ghandour AI1,Foster CD1ORCID

Affiliation:

1. Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, USA

Abstract

Railways are the most common mode of transportation for both people and cargo due to its advantages in economy, safety, and comfort. The finite element method has been broadly used for more than three decades to model the different components of the railroad system such as rails, sleepers (cross ties), and substructure and has been used to investigate a variety of problems associated with rail mechanics. Different multibody systems dynamics software programs have also been developed to investigate the dynamic performance and contact behaviour between the rails and the wheels and to determine the contact forces. In this work, a full three-dimensional model that couples both the finite element method and the multibody systems dynamics has been used to study the railroad system. The main focus of this study is to model the bridge approach problem under dynamic load. The bridge approach problem arises from the sudden change in the foundation's stiffness under the rails at the bridge entry and exit, leading to high levels of stress and settlement that can also cause further problems over time. The effect of using a concrete slab at the bridge entry is also investigated in this study, using two slab designs: rectangular and inclined. The results show the effectiveness of the three-dimensional model and slab implementation on the forces and the vertical deformation, especially the inclined slab that applies a gradual change in the stiffness rather than a sudden change.

Funder

U.S. Department of Transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3