A computational procedure for prediction of ballasted track profile degradation under railway traffic loading

Author:

Nguyen K12,Villalmanzo D I3,Goicolea J M1,Gabaldon F1

Affiliation:

1. Department of Continuum Mechanics and Structures, School of Civil Engineering, Technical University of Madrid, Spain

2. Department of Construction, Eduardo Torroja Construction Science Institute, Spain

3. ADIF, C/Titán, No 4-6, 28045, Madrid, Spain

Abstract

A computational procedure is developed in the present paper, allowing the prediction of the ballasted track profile degradation under railway traffic loading. In this procedure, an integration of the short-term and long-term mechanical processes of track deterioration is taken into account, using a track degradation model. This degradation model is incorporated into a finite element code where two modes of calculation are implemented: the “implicit mode” concerns the short-term track deterioration, in which the hypoplastic model is used for the ballast layer and the dynamic response to an instantaneous train axle passage is obtained to serve as input data for the “explicit mode”, which concerns the simulation of long-term track deterioration, using the accumulation model for ballast layer. The whole procedure is illustrated on the prediction of the ballasted track profile degradation of a track section of 100 m. The results show a significant influence of the type of track geometry defects and the vehicle velocity on the evolution of track deterioration and the capability of the proposed procedure in reproducing the track profile degradation.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3