Non-linear influences of track dynamic irregularities on vertical levelling loss of heavy-haul railway track geometry under cyclic loadings

Author:

de Melo Andre Luis Oliveira123,Kaewunruen Sakdirat1,Li Ting4,Goto Keiichi5

Affiliation:

1. School of Engineering, University of Birmingham , Birmingham , B15 2TT , United Kingdom

2. School of Engineering, Federal University of Bahia , Salvador , 40.170-160 , Brazil

3. National Agency for Land Transports , Brasilia , 70.200-003 , Brazil

4. School of Civil Engineering, Shijiazhuang Tiedao University , Shijiazhuang , China

5. Railway Dynamics, Railway Technical Research Institute , Tokyo , 185-8540 , Japan

Abstract

Abstract With an emphasis on the combined degradation of railway track geometry and components, a new numerical-analytical method is proposed for predicting the track geometrical vertical levelling loss (VLL). In contrast to previous studies, this research unprecedentedly considers the influence of initial track irregularities (ITI) on VLL under cyclic loadings, elastic-plastic behaviour, and different operational dynamic conditions. The non-linear numerical models are simulated using an explicit finite element package known as LS-Dyna, and their results are validated by full-scale experimental and field measurement data. The outcomes are iteratively regressed by an analytical logarithmic function that cumulates permanent settlements, which innovatively extends the effect of ITI on VLL in a long-term behaviour. For a typical heavy-haul railway operating under 30 tons axle load and 60 km/h train velocity, the result indicates that the set of ITI with the highest standard deviation (SD) of vertical profile (VP) degrades faster (37% on average) than that with the lowest SD. Additionally, our new findings reveal that the worst scenario is related to a train running at 60 km/h and carrying a load of 20 tons/axle in an uneven track whose SD of VP evolves from 3.23 mm at N = 0 (ITI) to 7.20 mm, whereas the best one corresponds to a train at 60 km/h and 30 ton axle load in an uneven track whose SD of VP downgrades from 0.48 to 1.50 mm, both at 3 M cycles (or 60 million gross tons). These findings indicate the importance of considering the ITI for predicting track geometrical VLL under cyclic loadings. Therefore, based on this research, an acceptable condition (thresholds) of ITI can be redefined for a minimum effect on VLL, which can support the development of practical maintenance guidelines to extend the railway track service life.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3