Numerical prediction of the development of rail wear on high-speed railways

Author:

Wang Pu1ORCID,Wang Shuguo1,Gao Liang2

Affiliation:

1. Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing, China

2. School of Civil Engineering, Beijing Jiaotong University, Beijing, China

Abstract

In this paper, a numerical prediction model was established to investigate the development of rail wear on high-speed railways, and a corresponding program was written using Matlab. According to Archard’s material wear theory, the wear depth distribution in the wheel–rail contact patch and along the rail profile was calculated based on a simulation of vehicle–track dynamics and a wheel–rail rolling contact analysis. In the dynamics model, various structural components and the complex nonlinear interactions between components were precisely simulated to ensure consistency with reality. Simulations were then conducted for every possible load case, and dimensionless weight factors were introduced to model the diverse operating conditions of a high-speed railway. An adaptive step algorithm was adopted to iteratively update the rail profile and reduce cumulative deviation or errors, improving the stability and reliability of the numerical model. Finally, a case study was conducted to investigate the development of wear in different track sections on a high-speed railway using the developed model. The results indicated that in the circular curve and transition sections, the side wear of the outer rail was obvious, and the wear of the inner rail was relatively smaller and mostly distributed in the middle of the railhead. The wear of the outer rail was more severe in the circular curve section compared to that in the transition sections. The closer to the rail shoulder, the greater the difference between the wear in the circular curve section and that in the transition section. In the tangent section, the wear of both rails was similarly distributed in the middle of the railhead and far less severe than in either the circular curve or transition sections. The agreement between the calculated results and field observations verified the rationality of the established rail wear model, which shows promise for improving the maintenance planning of high-speed railways and furthering the understanding of the rail wear processes.

Funder

Science and Technology Research Project of China Railway Corporation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of derailment and wheel wear in a BEML metro coach under different operating conditions;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-09-09

2. Research of operation mode of high-speed trains on the effect of rail wear evolution law;Industrial Lubrication and Tribology;2023-11-14

3. Analysis of the causes of severe side wear of the high rail on metro curves by numerical simulation and field investigation;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2023-08-03

4. Prediction of rail profile evolution on metro curved tracks: wear model and validation;International Journal of Rail Transportation;2022-08-22

5. A taxonomy of railway track maintenance planning and scheduling: A review and research trends;Reliability Engineering & System Safety;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3