Modeling temperature dependence of tensile fracture strength for rocks considering phase transition and the direct effect of thermal damage

Author:

Zhao Ziyuan12,Ma Jianzuo123,Zheng Shifeng2,Kou Haibo2,Qiu Jun2,Li Weiguo12ORCID,Zheng Fangjie2,Lang Siyuan4

Affiliation:

1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, China

2. College of Aerospace Engineering, Chongqing University, Chongqing, China

3. College of Mechanical Engineering and Automation, Chongqing Industry Polytechnic College, Chongqing, China

4. High School Affiliated to Southwest University, Chongqing, China

Abstract

Accurately and conveniently acquiring the tensile fracture strength of rocks at different temperatures is vital no matter for the security or economical design of deep underground engineering projects. Extensive testing in the laboratory, assisted with fitting approaches, is the main method to obtain the high-temperature tensile fracture strength in the available literature. However, the high-temperature destruction test is difficult to conduct and requires numerous time and resources. In this work, considering the main physical mechanisms such as phase transition and thermal damage that affect the tensile fracture strength of rocks at high temperatures, theoretical models for predicting their temperature-dependent tensile fracture strength (TDTFS) are established based on the Force-Heat Equivalence Energy Density Principle. The presented models achieve great prediction on the different variation trends of tensile strength below and above the phase transition temperature, as well as the corresponding sudden change of strength. For rocks without phase transition, the presented model only needs some physical parameters tested at room temperature can get a good prediction capacity on the TDTFS. Moreover, a new theoretical characterization model of the equivalent thermal damage parameter was presented and take a comparison with the previous model. Finally, the potential applications and limitations of the TDTFS model are further discussed. The application threshold of the presented TDTFS models is relatively low, and they may therefore be suitable as a method for providing a rapid and preliminary evaluation of strength at a large temperature range for rock engineering.

Funder

Science and Technology Research Program of Chongqing Municipal Education Commission, China

the Autonomous Research Funds for State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing, China

the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3