Compressive stress-strain relationships of concrete exposed to elevated temperatures based on mesoscopic damage method

Author:

Bai Wei-Feng1ORCID,Wang Wei-Li1,Guan Jun-Feng1,Wang Jian-you2,Yuan Chen-yang1

Affiliation:

1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou, China

2. Tianjin Dingzhou Survey Co., Ltd, Tianjin, China

Abstract

Damage evolution in concrete after high temperature is a complicated procedure, in which the pre-peak strain hardening behaviour, the post-peak strain softening behaviour and the impact of high temperature play key roles. Uniaxial and biaxial compression damage models of concrete considering high temperature degradation effect are proposed based on damage theory and experimental phenomena. They consider that the destruction of concrete is actually the cumulative evolution course of the two meso-damage modes, rupture and yield. High temperature changes the mechanical performance in microstructure of concrete and the generation and propagation of microcracks. It could be described by adjusting the probability distributions which characterize the mesoscopic damage evolution. The damage constitutive model is employed to determine the stress-strain behaviour of concrete under uniaxial compression, and the calculated results are compared with the experimental results under different high temperature levels. Results indicate that the proposed model can not only predict the stress-strain behaviour with acceptable accuracy in macroscopic scale, but also reveal the damage evolution mechanism in mesoscopic scale. Finally, the constitutive behaviour under biaxial compression is also simulated to investigate the influence of high temperature on biaxial stress-strain behavior and strength envelope.

Funder

Wei-feng BAI

Jun-feng GUAN

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3