A multi-scale model from microscopic cracks to macroscopic damage of concrete at elevated temperatures

Author:

Sun Bin1ORCID,Guo Tong2

Affiliation:

1. China-Pakistan Belt and Road Joint Laboratory on Smart Disaster Prevention of Major Infrastructures, Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing, China

2. School of Civil Engineering, Southeast University, Nanjing, China

Abstract

A multi-scale model is established to describe the relationship between the macroscopic damage evolution and microscopic cracks behaviors of concrete at elevated temperatures. The evolution equation of the ideal microscopic crack system of concrete at elevated temperatures is deduced for construct the model, which can predict the microscopic crack density and macroscopic damage of concrete at elevated temperatures. The multi-scale model fuses some advantages of the traditional microscopic and macroscopic damage models. Finally, multi-scale damage of a concrete block under high temperature is predicted and compared with the corresponding experimental results, which is utilized to support the ability of the developed model. The results show that the developed multi-scale model can be used to evaluate fire damage of concrete structures in macro-scale as well as explain its physical mechanisms in micro-scale.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental investigations and micromechanical thermal fatigue models of concrete;International Journal of Damage Mechanics;2024-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3