Experimental investigations and micromechanical thermal fatigue models of concrete

Author:

Peng Haiyou1,Xie Qiang1,Wang Chong2,Zhou Shuai2ORCID,Ju J Woody3ORCID

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing, China

2. College of Materials Science and Engineering, Chongqing University, Chongqing, China

3. Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA

Abstract

The vast changes in temperature are what produce thermal fatigue damage to concrete. In this study, concrete specimens in three different categories—C20, C40, and C60—are tested for thermal fatigue at temperatures ranging from 10°C to 80°C in an atmosphere with constant relative humidity. Utilizing ultrasonic nondestructive testing, the elastic modulus of concrete is determined. After thermal cycling, the mass reduction and appearance of samples are also recorded. The results demonstrate that the degrading effects of thermal fatigue clearly influence concrete. As the thermal cycle lengthens, the elastic modulus of concrete rapidly decreases, and C60 concrete experiences a greater reduction in elastic modulus than C20 concrete. With thermal cycles, the damage factor increases and the ultrasonic wave velocity steadily decreases, suggesting a propagation of the concrete’s interior microcracks. Additionally, the micromechanical thermal fatigue model is developed based on the experimental results. The ability to simulate and describe the physical behavior of concrete under thermal fatigue stress on the microscale is validated by the proposed micromechanical damage model.

Funder

the Key Research and Development Program of Ningxia Hui Autonomous Region

National Natural Science Foundation of China

Chongqing Geological Disaster Prevention Center

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3