Multiscale prediction of thermal damage for hybrid fibers reinforced cementitious composites blended with fly ash at high temperatures

Author:

Cao Kai12,Liu Ganggui2,Li Hui3ORCID,Huang Zhiyi2

Affiliation:

1. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China

3. School of Transportation, Southeast University, Nanjing, China

Abstract

Thermal damage assessment of cementitious composites is essential for evaluating post-fire health conditions of the engineering structures, as well as the basis for reinforcement and repair after fires. Fibers and fly ash are widely used in cementitious composites due to their excellent properties. However, quantifying and predicting the thermal damage of hybrid fibers reinforced cementitious composites blended with fly ash at high temperatures is still inexplicit. Hence, this study aims to realize multiscale prediction of thermal damage for hybrid fibers reinforced cementitious composites blended with fly ash at high temperatures. First, the volumes of the phase compositions during hydration and dehydration are calculated by the hydration of cement and fly ash and the dehydration of hydration products. Then, a multiscale model is established to predict the thermal damage of hybrid fibers reinforced cementitious composites and verified by the experimental data. At last, the temperature field of tunnel lining structure in fires is obtained by numerical modeling and employing it to predict thermal damage at different thicknesses and moments. Results show that the heating rate determines the dehydration degree of hydration products and the volumes of the phase composites at high temperatures. The proposed multiscale model can reflect the thermal microcracking of cement paste, the interfacial thermal damage between aggregates and the cement paste, and the deterioration of elastic modulus of fibers. After three hours of exposure to fires, serious damage appears at the surface and the thickness of 2 cm and 5 cm of the lining, while there is nearly no damage at a thickness of 30 cm or more.

Funder

Zhejiang Provincial Transportation Science and Technology Project of China

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental investigations and micromechanical thermal fatigue models of concrete;International Journal of Damage Mechanics;2024-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3