Damage evolution analysis of concrete based on multi-feature acoustic emission and Gaussian mixture model clustering

Author:

Yu Bo123ORCID,Liang Jian1ORCID,Ju Jiann-Wen Woody14ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Guangxi University, Nanning, China

2. Key Laboratory of Engineering Disaster Prevention and Structural Safety of Ministry of Education, Nanning, China

3. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Nanning, China

4. Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA

Abstract

In this work, a novel method for damage evolution analysis of concrete under uniaxial compression is proposed based on the multi-feature acoustic emission (AE) and the Gaussian mixture model (GMM) clustering. The hierarchical clustering algorithm is adopted to select optimal AE parameters, while multiple features of these parameters are generated through the principal component analysis (PCA). Then the concrete damage signals are separated by using the GMM clustering with multiple features. Meanwhile, the waveform signals associated with concrete damage in each cluster are validated using the Fast Fourier transform (FFT) and the continuous wavelet transform (CWT). Finally, the damage evolution process of concrete under uniaxial compression is divided based on the variation of AE characteristics. The results show that the frequency ranges of signals for micro-cracks, mixed cracks and friction of concrete under uniaxial compression are 20–30 kHz, 20–65 kHz, and 100–120 kHz, respectively. The damage process of concrete under uniaxial compression is divided into three stages according to the inflection points of the cumulative energy curve, namely the initial compaction stage, the crack formation stage and the failure stage.

Funder

The overseas expertise introduction project for discipline innovation

the National Natural Science Foundation of China

The Guangxi Key Research and Development Project

the Innovation Project of Guangxi Graduate Education

the Guangxi Science and Technology Major Project

the Guangxi Science Fund for Distinguished Young Scholars

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3