Damage mechanism characterization of ±35° and ±55° FW composite tubes using acoustic emission method

Author:

Alimirzaei Sajad12,Najafabadi Mehdi Ahmadi1ORCID,Nikbakht Ali2,Pahlavan Lotfollah3

Affiliation:

1. Non-destructive Testing Lab, Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

2. Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran

3. Department of Maritime and Transport Technology, TU Delft, Delft, The Netherlands

Abstract

The focus of this study is to investigate the mechanical properties, of ±35° and ±55° filament wound (FW) composite tubes under axial compression loading using the acoustic emission technique. For this purpose, material failure, crashworthiness characteristics, and the effect of each mechanism on the energy absorption capacity were studied using numerical and experimental approaches. Also, to identify and estimate the contribution percentage of damage mechanisms as well as how the damage grows in the specimens, the analysis of acoustic emission signals recorded during loading was performed. Digital image correlation was additionally used to capture displacement/strain contour maps. Finally, to analyze the effect of the winding pattern in the experimental test, the tubes were simulated using finite element analysis (FEA). For modeling of damage mechanisms, a 3D continuum damage model was used. The results of signal processing showed that by increasing the weaving angle of fibers from ±35° to ±55°, the separation of fibers from the matrix decreases, and the percentage of matrix crushing and fiber failure increases. The assessment of damage percentages showed that the reason for the large drop in force at ±55° compared to ±35° is the increase in matrix crushing. Furthermore, the failure behavior of FW tubes appeared to be dominated by local buckling, and the FEA effectively predicted the linear behavior and maximum load value of the composite tubes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3