Affiliation:
1. Research Laboratory of Numerical Control of Industrial Processes, National Engineering School of Gabes, University of Gabes, Tunisia
Abstract
An arbitrary choice of the neural controller adaptive rate can have a negative effect on the performance of the closed-loop system. In this study, we propose a novel methodology for neural controller adaptive rate using Particle Swarm Optimization algorithm. The developed control scheme is composed of a recurrent neural networks emulator and controller with decoupled adaptive rates. Constraints on the adaptive rate are derived from the Lyapunov stability method. Particle Swarm Optimization is proposed as a mechanism to optimize the adaptive rate of the NC to improve the closed-loop performances. The advantages of the proposed new control algorithm are as follows: (1) online optimal choice of adaptive rate, which reduces the effort for searching an adequate neural controller adaptive rate when considering the conventional methods and (2) ensuring stability, faster convergence, disturbance rejection, and good tracking. The efficiency of the proposed PSO adaptive rate is demonstrated with numerical control of SISO nonlinear system. The obtained results prove the efficiency of the proposed NC compared to those obtained with existing methods. An application of the developed approach on a semi-batch reactor is presented to validate simulations results.
Funder
Ministry of Higher Education and Scientific Research-Tunisia
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献