An improved indirect adaptive neural control performance based on MOPSO approach: An experimental validation via a transesterification reactor

Author:

Hamza Rabab1ORCID,Zribi Ali1ORCID,Farhat Yassin1ORCID

Affiliation:

1. Research Laboratory of Numerical Control of Industrial Processes, National Engineering School of Gabes, University of Gabes, Tunisia

Abstract

This paper proposes an indirect adaptive control method based on recurrent neural networks. To achieve satisfactory closed-loop performances, a neural emulator (NE) and a neural controller (NC) adapting rates are established using the multiobjective particle swarm optimization (MOPSO) algorithm. The proposed MOPSO algorithm has been designed to minimize, simultaneously, two separated objective functions: the emulation and the tracking errors. The proposed approach guarantees that the NE tracks the system dynamics within a short time window. Consequently, it provides for the suggested control structure useful information to synthesize optimal adaptive rates of the NE and NC. To validate the effectiveness of the proposed MOPSO algorithm, a numerical example and an experimental validation on a chemical reactor are proposed.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3