Modelling and validation of a seat suspension with rubber spring for off-road vehicles

Author:

Zhao Leilei12,Yu Yuewei1,Zhou Changcheng1,Yang Fuxing2

Affiliation:

1. School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China

2. School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

To improve seat performance of low-frequency vibration isolation, this paper investigates a new type of seat suspension with a hollow composite rubber spring. To better describe the real system, a nonlinear suspension model was built. Then, the model parameters were identified and validated, the results show that the model is workable and the identified parameters are acceptable. The acceleration transmissibility of the new suspension was also analyzed by test and simulation. The resonant frequencies measured are close to the simulated under different excitation amplitudes, and all the relative deviations of the resonant frequency are less than 2.0%. Finally, in order to make clear how much the new suspension is better than the traditional suspension with the coil spring, the comparison of ride comfort was conducted under different working conditions. The results show that the new suspension can more effectively attenuate the low frequency from the uneven ground, meanwhile, it can provide a more stable support so that the driver can control the vehicle effectively. The model proposed can be used to predict the performance of the new seat suspension. The new suspension and the model provide a valuable reference for broadening the type of the seat suspension and exploring the optimal performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3