A Novel Application of Magnetorheological Seat Suspension with an Improved Tuning Control Strategy

Author:

Liang Yuxuan12,Dong Xiaomin1ORCID,Ao Wai Kei2ORCID,Ni Yi-Qing2ORCID

Affiliation:

1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400030, China

2. National Rail Transit Electrification and Automation Engineering Technology Research Center, Hong Kong Polytechnic University, Hong Kong 999077, China

Abstract

During the operation of commercial vehicles, drivers are usually exposed to long-term vibrations and acquire several health problems. Moreover, the end-stop impacts caused by large-magnitude vibrations or shocks may affect driving performance and result in injuries. A study of magnetorheological (MR) seat suspension controlled by a novel tuning control strategy is conducted in this research to reduce vibrations and avoid end-stop impacts. First, the MR damper’s characteristics are tested, and a mathematical model of MR seat suspension is established. Then, an improved tuning control strategy is designed based on this model. The proposed strategy has three control stages that can be adjusted according to the suspension stroke to improve seat comfort or avoid end-stop impacts. Each part of the control strategy is designed separately, and the vibration attenuation performance of this seat suspension is evaluated with a simulation for three excitations, i.e., harmonic excitation, bump excitation, and random road excitation. Finally, an experiment is conducted to verify the conclusion of the simulation. The seat suspension with the proposed control shows good performances on vibration attenuation and end-stop impact reduction. Compared with a passive seat, the vibration level is reduced by around 27% and end-stop impact is avoided when semiactive suspension with the proposed strategy is used. It also shows the best overall performance among the three experimental algorithms. Both the simulation and the experiment results indicate that the vibration attenuation performance of the seat suspension can be greatly improved with the improved tuning control strategy.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3