Affiliation:
1. Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende (CS), Italy
Abstract
The nonlinear mechanical oscillator with X-shaped-spring suspension has attracted relevant attention in the past couple of years due to its ability to tailor the corresponding stiffness characteristic on purpose and fit diverse engineering needs. This paper deeply investigates the conditions for such a configuration to exhibit a quasi-zero stiffness behaviour with both the linear and cubic elastic term of the force-displacement curve equal to zero. The resulting quintic characteristic leads to a vibration isolator with a much larger isolation frequency band respect to the classical isolator with non-zero cubic elastic term only. A systematic comparison between the quintic and cubic characteristics is performed, emphasizing the asymptotic trends, and thus showing the fundamental behaviours. It is found that the critical damping for an unbounded response of the quintic isolator is proportional to the square of the normalized excitation amplitude, while that of the cubic isolator is directly proportional to the normalized displacement amplitude. This makes the critical damping of the quintic isolator much lower, and thus more favourable in practical engineering applications, where the values of the normalized excitation amplitude are less than one.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献