Design and experimental verification of self-powered electromagnetic vibration suppression and absorption system for in-wheel motor electric vehicles

Author:

Wang Ruochen1ORCID,Jiang Yu1ORCID,Ding Renkai2ORCID,Liu Wei1,Meng Xiangpeng2,Sun Zeyu1

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, China

2. Automotive Engineering Research Institute, Jiangsu University, China

Abstract

A self-powered electromagnetic vibration suppression and absorption system integrated with a magnetorheological damper and a linear motor is designed to attenuate the negative effect of vertical vibration caused by the increased unsprung mass for in-wheel motor electric vehicles in this article. The magnetorheological damper is used as a suspension damper to suppress body vibration, and linear motor is used as a dynamic vibration absorber, namely, linear electromagnetic dynamic vibration absorber, to absorb tire vibration, and regenerates the vibration power to drive the magnetorheological damper, realizing self-power. Based on power flow theory, the power transfer mechanism of the vertical vibration for in-wheel motor electric vehicles and the regeneration potential are analyzed. The negative effect on the dynamic performance of in-wheel motor electric vehicles is analyzed through the root mean square of dynamic responses. Moreover, the specific structure scheme of the self-powered electromagnetic vibration suppression and absorption system is provided. The influence of system mass, stiffness, and damping of the linear electromagnetic dynamic vibration absorber on the dynamic performance is analyzed, and these parameters are optimized by particle swarm optimization. Simulation results show that in comparison with a passive damper, the self-powered electromagnetic vibration suppression and absorption system can reduce the body acceleration by 17.05%, which is better than the magnetorheological damper (10.08%). The self-powered electromagnetic vibration suppression and absorption system increases the tire dynamic load by 5.62%, but it is 8.68% less than the magnetorheological damper. Additionally, the regenerated power can offset the consumed power adequately to realize self-power. Finally, a bench test is conducted to verify the effectiveness and feasibility of the self-powered electromagnetic vibration suppression and absorption system.

Funder

National Natural Science Foundation Project, China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3